a2 United States Patent

US009256740B2

(10) Patent No.: US 9,256,740 B2

Suzio et al. (45) Date of Patent: Feb. 9, 2016
(54) METHOD AND SYSTEM FOR ANALYSIS OF (56) References Cited
SECURITY EVENTS IN A MANAGED
COMPUTER NETWORK U.S. PATENT DOCUMENTS
(71) Applicant: Internati({nal Business Machines gi‘gg:ﬁz ﬁ x égggg ilrrllégs otal. 370/294
Corporation, Armonk, NY (US) .
(Continued)
(72) Inventors: Michael John Suzio, Royal Oak, MI
(US); Gary Israel Givental, Royal Oak, FOREIGN PATENT DOCUMENTS
MI (US); HuyAnh Dinh Ngo, Windsor, WO WO 00125527 5/2000
CA (US) WO WO 00/34867 6/2000
WO WO 00/54458 9/2000
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Denning, D.E., An Intrusion-Detection Model, Software Engineer-
patent is extended or adjusted under 35 ing, IEEE Transactions on; vol. SE-13, Issue 2, Feb. 1987 pp. 222-
U.S.C. 154(b) by 50 days. 232. [See pp. 1-2, paragraphs I-II].
(Continued)
(21) Appl. No.: 14/227,610
(22) Filed: Mar. 27,2014 Primary Examiner — Anthony Brown
(74) Attorney, Agent, or Firm — King & Spalding
(65) Prior Publication Data
US 2014/0215624 Al Jul. 31, 2014 67 ABSTRACT
Related U.S. Application Data An event retrieval and analysis system compares counts of
event data for a device to stored profile counts to determine if
(63) Continuation of application No. 11/359,261, filed on alerts should be triggered. Event data can be retrieved by a
Feb. 22, 2006, now abandoned. sensor. Rules for analyzing the event data can be retrieved
(60) Provisional application No. 60/655,158, filed on Feb. based on the device. The event data is analyzed based on the
29.2005. rules to determine recordable events. Recordable events are
’ organized into categories representing a type or severity of
(51) Int.CL attack. Current event counts are calculated by summing the
GO6F 1100 (2006.01) recordable events for each category. A normal profile is
GO6F 21/55 (2013.01) retrieved for the device and compared to the current event
HO04L 29/06 (2006.01) count. A percentage change trigger can be retrieved from a
(52) US.CL threshold matrix based on the current event count. The per-
CPC ... GOGF 21/554 (2013.01); HO4L 63/1416 centage increase of the current event count over the normal
(2013.01) pr.oﬁle is calculatf:d apd comparf:d to the percentage change
(58) Field of Classification Search trigger to determine if an alert is triggered by the analysis
CPC oo, HO4L 63/1416; HO4L 63/1408 SYStem-
USPC e 726/22-25

See application file for complete search history.

8 Claims, 13 Drawing Sheets

100

Scheduler

Database

' 12
12! 12 12;
i
139
Worker Worker 2 Worker 3 Worker Worker Worker
heduler wrapper i $? l Scheduler wrapper
l N
A |
155 160
> 150
C ey Oy | ® Incident Trouble
Information Mss XPS Rules Report [Ticketing
Database Database Database. Engine System

US 9,256,740 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,490,256 B1 12/2002 Jones et al.
6,839,850 Bl 1/2005 Campbell et al.
7,006,992 Bl 2/2006 Packwood
7,039,954 B2 5/2006 Lingafelt et al.
7,246,376 B2 7/2007 Moharram
7,266,754 B2 9/2007 Shah et al.
7,359,865 Bl 4/2008 Connor et al.

2002/0078381 Al
2002/0107953 Al

6/2002 Farley et al.
8/2002 Ontiveros et al.

2002/0147622 Al* 10/2002 Droletetal.coeoee. 705/7
2003/0009693 Al 1/2003 Brock et al.

2003/0065613 Al 4/2003 Smith

2003/0145232 Al* 7/2003 Polettoetal. 713/201

2004/0044912 Al
2004/0143756 Al
2005/0060562 Al
2006/0070130 Al*

OTHER PUBLICATIONS

3/2004 Connary et al.

7/2004 Munson et al.

3/2005 Bhattacharya et al.

3/2006 Costeaetal.cccoee.e. 726/24

Porras, P.A., et al., Penetration State Transition Analysis: A Rule-
Based Intrusion Detection Approach, Computer Security Applica-
tions Conference, 1992., Proceedings., Eight Annual Nov. 30-Dec. 4,
1992, pp. 220-229 [See pp. 221-226, paragraphs 2-4].

Lindqvist, U, et al., eXpert-BSM: A Host-Based Intrusion Detection
Solution for Sun Solaris, Computer Security Applications Confer-
ence, 2001., ACSAC 2001., Proceedings 17 Annual Dec. 10-12,
2001, pp. 240-251. [See pp. 7-9, paragraph 4.3-4.4.].

Debar, H., et al, A Revised Taxonomy for Intrusion-Detection Sys-
tems, IBM Research Report, 1999. [See pp. 4-8, paragraphs 4-5].
NetRanger User’s Guide Version 2.1.1, Cisco Systems, Inc., 1998.
[See pp. 1-19, paragraph 1].

Porras, Phillip A., et al, Mission-Impact-Based Approach to
INFOSEC Alarm Correlation, Lecture Notes in Computer Science,
Proceedings Recent Advances in Intrusion Detection, Oct. 2002, p.
95-114. [See pp. 2-15, paragraphs 2-4].

Bace, Rebecca, An Introduction to Intrusion Detection & Assessment
for System and Network Security Management, Infidel, Inc. for
ICSA (White Paper) Apr. 1999. [See pp. 11-16].

Hunteman, William, Automated Information System—(AIS) Alarm
System, Los Alamos National Laboratory, http://csrc.nist.gov/nissc/
1997/proceedings/394.pdf. [See pp. 4-10, paragraphs 3-6].
Luckham, David C., et al., Complex Event Processing in Distributed
Systems, Stanford University Technical Report CSL-TR-98-754,
Mar. 1998, 28 pages. [See pp. 4-8, paragraph 2].

Mukherjee, B., et al., Network Intrusion Detection, IEEE Network
Magazine: May/Jun. 1994, vol. 8, Issue: 3, pp. 26-41. [Seepp. 33-39].
Kumar, Sandeep, et al., An Application of Pattern Matching in Intru-
sion Detection, Technical Report 94-013, Department of Computer
Sciences, Purdue University, Mar. 1994, http:/citeseer.ist.psu.edu/
kumar94application.html. [See pp. 15-26, paragraph 4].

Jou,. Frank Y., et al., Architecture Design of a Scalable Intrusion
Detection System for the Emerging Network Infrastructure, DARPA
Order No. E296, Apr. 1997 http://citeseer.ist.psu.edu/
jou97architecture html. [See pp. 24-28, paragraph 4.1.3.2].
RealSecure™ , Network Sensor User Guide, Version 5.0, © 2000 by
Internet Security Systems, Inc. [See pp. 5-31, chapters 2-3].

D’ Amico, Anita, Assessment of Open e-Security Platform198: Ven-
dor-Independent Central Management of Computer Security
Resources, Applied Visions, Inc., 1999 White Paper. [See pp. 6-10].
Imamura et al., Potential Application of Training Based Computation
to Intrusion Detection, IEEE, Jul. 2004, pp. 411-414.

Yarng et al., Profiling Cyber Attacks Using Alert Regression Profiles,
IEEE, Globecom, 2003, pp. 1456-1460.

* cited by examiner

US 9,256,740 B2

Sheet 1 of 13

Feb. 9, 2016

U.S. Patent

[am3rg

wWANSAS yoday sudug | aseqere(] aseqere(]
Sunoyo1l, e sony SSIN uonewLIoJu]
a[qnoi], Pl ﬁ
A
09T 3T 051
1addeim 19[npayog b v
€ IYIoM Z IIopM [IMI0M € JoI0 M\ 7 II0M 1 IoyI10M
Z.H Z,H Z,.H j Zrﬁ Z.H. Z,—l
0cl £l 0¢l 0el 0t 1 Ot 1
] L 89 'L 'L 'L
0 el el Otl 0tl [l
Scl 541 54! 54! ¥4l Y4
0z ¥ 0ct | FJ_
oseqele(q 101230185V (e » INPIYOS
Ionpayos
1 STI
4 Ng v 'S 23 'S
001 SO SO ST SOT SO

U.S. Patent

Feb. 9, 2016
START
\ 4 205

Receive event data at
the sensors

l 210

Transmit event data to
the Aggregator

l 215

Conduct initial
processing of
event data

i 220

Register Scheduler as
a client to the
Aggregator

l 225

Transmit event data to
the Scheduler

l 230
Convert event

data into discreet
work tasks

l 235

Register a Worker
with the Scheduler

Sheet 2 of 13

US 9,256,740 B2

l2,00

l 240

Transmit tasks to
the Worker Nodes

L 4 245

Process tasks

the Worker

Retrieve the task from| YES

260

Remove the task

from pending queue

265

Transmit updated
device state to the

for the task

Scheduler database

>

Figure 2

U.S. Patent

YES

Feb. 9, 2016

Sheet 3 of 13

From Step 210
Figure 2
4 305
Receive data from the
Sensors

310
Determine the device

that the data is associated
with

315

Add received data to the
data queue for that
device

Has the queue
gached its limit?

predetermined
amount of time
passed since the last

v 330

Summarize the data by
categories

Goto Step 220
Figure 2

Figure 3

US 9,256,740 B2

U.S. Patent

Feb. 9, 2016

From Step 225
Figure 2

l 405

Receive queued event
data

410

Generate an event list
comprised of the queued
event data and a header

415

Retrieve the name of the
customer associated with
the event data

420

Retrieve the name of the
device associated with
the event data

425

Insert the customer name
and name of the device
into the header of the
event list

v
Goto Step 235

Figure 2

Figure 4

Sheet 4 of 13

US 9,256,740 B2

U.S. Patent

Feb. 9, 2016

From Step 235
Figure 2

l 505

X = a discrete work task

X=1

Y 510

Sheet 5 0of 13

US 9,256,740 B2

Retrieve task X

v 515

Determine the device
associated with task X

Y 520

Determine the network
that the device resides in

Has a
Worker been

NO
v 530

Associate Worker
with the network

Y 535
Transmit the task to the

Worker associated with
the network

discrete work task
X need to be

transmitted to a

Worker?

YES
v 545

X=X+1

Goto Step 245¢—
Figure 2

Figure 5

U.S. Patent

Feb. 9, 2016

From Step 525

Figure 5
NO
v 605

Retrieve a listing of
Workers

Y 610

Determine which
Worker is processing
tasks for the fewest
devices

6135

Select the Worker
processing tasks for
the fewest devices

¥ 620

Associate the Worker
with the current
network

Sheet 6 of 13

l

v
Goto Step 535
Figure 5

Figure 6

US 9,256,740 B2

U.S. Patent

Feb. 9, 2016 Sheet 7 of 13
From Step 240
Figure 2 l . 118
Transmit triggered
702 state of rule to a
notifier
Receive a task in the

pending queue at the
Worker Thread

i 704
Retrieve data for the

device being
evaluated

Y
Retrieve rules to be
applied to the device

based on rule X

the log Y data
trigger rule
X?

NO |the processing task is

data YES
v 708
X =Rule
X =
710
Y =alog event data .
Y=1]
712
Transmit log Y to N
rule X
4
Evaluate log Y

another log Y in
the task
data?

YES
726

Y=Y+1 NO

v 728

Transmit notification
to Rules Engine that

complete

rules need to
perform final
processing

YES l

US 9,256,740 B2

|245
-

Conduct final
processing steps

v 734

732

736
Transmit request to

process notifications
forrule X to a
notifier class

738

Take actions based
on notifications

YES
742
X=X+1]
744
Conduct clean-up
tasks
l 746
Transform rule into
serialized form

Figure 7

v
Goto Step 748

Figure 7A

U.S. Patent

Feb. 9, 2016 Sheet 8 of 13

From Step 746
Figure 7
v 748

Transmit serialized
rules and other data
to the Scheduler
database

750

Transmit notification
to Worker that the
task processing is

complete

4 752

Transmit notification
to the Scheduler that
the task processing is

complete

Goto Step 250
Figure 2

Figure 7A

US 9,256,740 B2

Calculate the overall
event count data

U.S. Patent Feb. 9, 2016 Sheet 9 of 13 US 9,256,740 B2
2 820
Fro}x;; Stzp77l Retrieve the 14
gtir ‘Previous hour” | J
\ 4 802
Parse recordable profile from the
. Scheduler database
event data into . 34
tegori £ i
caegones 204 Compare current alerts triggered
Calculate the total event count data based O'n the
event counts for each tohthe ,‘:Pre\?;)us
cateso our’ profile
£01 using the
L 806 threshold matrix

l 808
Retrieve metadata for alerts triggered
the device based on the i Q40
Qmparison~
l 810
Retrieve information s || Close the trouble
regarding the state of v 826 ticket for that alert
the device Save the triggered
Y alerts No
Retrieve a “normal” l 208 842
profile for the device Retrieve the event
from the Scheduler count data for the Save the triggered
database device for the alerts
814 previous four hours
Compare current
d 830
event count data Calculate the average 846
to tfl}le n01_’ma1 counts for each
tlll); ° ;) elgsmgtr? category and the || Generate atrouble | |
esho’d matnx overall event count ticket
| during the previous
four hours of data
. l 832 848
alerts triggered Compare current Lo
based on the event count data Generate an incident
Qmparison? to average counts report
for the previous | — ‘
YES four hours using
v 818 the threshold Goto Step 850
Save the triggered matrix Figure 8A
alerts

Figure 8

U.S. Patent

Feb. 9, 2016

From Step 848
Figure 8

i 850

Save the trouble
ticket and incident
report in the
Scheduler database

Sheet 10 of 13

864

Save the event count
data for the current

hour for the device in

v 852

Transmit the trouble
ticket and incident
report to the Worker

v 854
Transmit the trouble
ticket and incident

report to the
Scheduler

856
Transmit the trouble

ticket and incident

report

Were
any alerts
saved?

NO

no alerts
been saved for a
significant
amount of

YES
A 862

Transmit alert that
the sensor may have
a problem

A

the Scheduler
database

y 866

Recalculate the
“normal” profile
for the device

!

Goto Step 716
Figure 7

Figure 8A

US 9,256,740 B2

U.S. Patent Feb. 9, 2016 Sheet 11 of 13 US 9,256,740 B2

From Step 812, 820, or 830 814, 822,
Figure 8 832
y 905 035 4
X=1 5

B Determine if the
X= Categ'ory of data percentage increase

v 910 » triggers an alert based
Retrieve the event on the current event
dat t for X
count for X from the [— a’é cout ot

current event data

l 915

Calculate difference
between current
event data count for

count data exist in
the current

X and retrieved event

profile for X

NO
YES
v 945 MO
— X=X+1

higher that the

count in the Goto Step 816, 824, or 834

retrieved Figure 8 «

YES
v 925

Calculate the
percentage increase

930

Retne:'e the
threshold matrix
associated with

category X

Figure 9

U.S. Patent

Feb. 9, 2016

From Step 864
Figure 8A

1005

Determine the hour of
the day that the current
log data was collected

1010

Determine the day of the
week that current log
data was collected

Y 1015

Retrieve data points for
the same hour of the day
and day of the week as
the retrieved log data

y 1020

Calculate the trimmed
mean of the current log
data and the retrieved
data points

y 1025

Save the trimmed mean
as the “normal” profile
for that hour of the day
and day of the week in
the Scheduler database

v
Goto Step 716
Figure 7

Figure 10

Sheet 12 of 13

866

US 9,256,740 B2

U.S. Patent

Feb. 9, 2016 Sheet 13 of 13 US 9,256,740 B2

1100

1102 1105 1110 1115

v o

RANGE [1< 2 3

Minimum Count 0 501 1501

Maximum Count<+— 500 1500 (no limit)

% Change to Trigger Alert 1000% 100% 50%

1115

Figure 11

US 9,256,740 B2

1
METHOD AND SYSTEM FOR ANALYSIS OF
SECURITY EVENTS IN A MANAGED
COMPUTER NETWORK

STATEMENT OF RELATED PATENT
APPLICATION

This patent application is a continuation of U.S. patent
application Ser. No. 11/359,261, filed on Feb. 22, 2006, which
claims priority under 35 U.S.C. §119 to U.S. Provisional
Patent Application No. 60/655,158, filed Feb. 22, 2005. Each
application is hereby fully incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to the security of computing
devices in a computer network. More particularly, the present
invention relates to a method and system for receiving a set of
data for a device, categorizing the data based on potential
security events, and comparing the current number potential
security events to a stored value for the device to determine if
an alert should be activated.

BACKGROUND OF THE INVENTION

As e-commerce, or doing business over the Internet,
becomes a way of life rather than being characterized as novel
commercial activity, protecting computer systems against
malicious attacks or alleged pranks becomes vital to both
businesses and individuals because of potential economic
disasters. In other words, because businesses and individuals
are becoming more and more dependent upon computer net-
works that are integrated with the Internet, any interruptions
in service or attacks on such computer systems could have
devastating financial repercussions.

Security threats come in a variety of forms and almost
always resultin a serious disruption to a network. Hackers can
gain unauthorized access by using a variety of readily avail-
able tools to break into the network. The hacker no longer
needs to be an expert or understand the vulnerabilities of the
network—they only need to select a target and attack, and
once in, the hacker has control of the network. Denial of
Service (DoS) and Distributed Denial of Service (DDoS)
attacks aim to disable a device or network so users no longer
have access to network resources. Using Trojan horses,
worms, or other malicious attachments, hackers can plant
these tools on countless computers. Worms are programs
designed to infect networks, such as the Internet. A worm
travels from network to network replicating itself along the
way. Trojan horses pretend to be a program that the user
wishes to launch. A Trojan horse can be a program or file that
disguises itself as normal, helptul programs or files, but in fact
are viruses.

In addition, viruses can attach to email and other applica-
tions and damage data and cause computer crashes. A com-
puter virus is a broad term for a program that replicates itself.
A virus can cause many different types of damage, such as
deleting data files, erasing programs, or destroying every-
thing found on a computer hard drive. Not every virus can
cause damage; some viruses simply flash annoying messages
on a computer screen. A virus can be received by download-
ing files from the Internet to a personal computer or through
electronic mail. Users increase the damage by unknowingly
downloading and launching viruses. Viruses are also used as
delivery mechanisms for hacking tools, putting the security of
the organization in doubt, even if a firewall is installed. Hack-
ers can deploy sniffers to capture private data over networks

10

15

20

25

30

35

40

45

50

55

60

65

2

without the users of this information being aware that their
confidential information has been tapped or compromised.

As noted above, the nature of a distributed network makes
it vulnerable to attack. The Internet was designed to allow for
the freest possible exchange of information, data, and files.
However, this free exchange of information carries a price:
Some users will try to attack the Internet and computers
connected to the Internet; while others will try to invade other
users’ privacy and attempt to crack databases of sensitive
information or snoop around for information as it travels
across a network.

The field of managed security grew out of a need by com-
panies with distributed networks to protect and monitor their
devices on their network from attacks. Through a thorough
understanding of the devices and network topology security
providers attempt to monitor the network, and the data flow-
ing through it, to recognize a potential attack or security event
before the network is adversely affected. Security providers
typically monitor a customer’s network by obtaining infor-
mation from intrusion detection sensors and other network
devices. One conventional method of analyzing this data is
through the use of security engineers manually looking at one
or more screens of data representing customers’ networks to
determine if an attack is occurring. However, even in a rela-
tively small network, the network traffic can generate an
excessive amount of data, such that, it is unlikely that the
security engineer could spot all or even most of the attacks.

In addition, the conventional method is not an efficient and
effective use of engineering resources. Instead of searching to
determine where a problem might be, it would be more effi-
cient to signal the security engineers when network usage is
outside a predetermined norm so that the engineer’s time is
spent solving, not searching for, the problem. Furthermore,
under the conventional method, security providers have a
difficulty retaining qualified security personnel because the
monotonous time spent looking for problems is mentally and
physically stressful, leading to a high burnout rate.

Accordingly, there is a need in the art for an automated
system for receiving categorized event data representing a
type or severity of an attack on the network and comparing the
count of each category of event data to a normal count of
potential attacks on the device to determine if an alert should
be generated, the alert representing a significant increase in
one or more types of attacks on the device. Furthermore, there
is a need in the art for generating a normalized profile of event
count data for each device in the network and updating this
normalized profile as the network matures so that a determi-
nation can be made if activity rises to the level such that alerts
should be triggered and action should be taken by the security
engineers.

SUMMARY OF THE INVENTION

The event retrieval and analysis system can retrieve event
data from a device on a network, categorize recordable events
in the event data, and compare the categorized counts to
stored profiles of data for that device against a threshold
matrix to determine if alerts should be triggered for the
device. In support of its alert determination, a sensor associ-
ated with a device passes event data to the analysis system.
The event data can then be sorted into categories of recordable
events. Categories generally represent one or more groupings
of security events in the event data that represent a type or
severity of a potential attack on the device or network. For one
aspect, the categories being summarized include low priority
event count, medium priority event count, high priority event
count, total event count, unique signatures count, scanned

US 9,256,740 B2

3

event count, worm signature event count, sweeps signature
event count, hot decodes signature event count, and staging
signature event count.

Each category can be summed into current count data and
compared to a normal profile or prior event count data for the
device and stored in a database. A threshold matrix can be
retrieved and used to analyze the current event count data as
compared to the normal profile or prior event count data to
determine if an alert should be triggered. The alert can include
an audible or visual alarm, a report describing the reason for
the alert, or a notification of the alert sent to a pager, phone,
cell phone, email address or workstation for viewing and
analysis by a technician. The threshold matrix typically
includes a table having rows for “minimum count” and
“maximum count”, and “percentage change required to trig-
ger an alert”. The threshold matrix can also include one or
more columns of count ranges that provide the range of event
count and the percentage change needed at that event count
level to trigger an alert.

For one aspect of the present invention the analysis system
can receive a current event count for a category of recordable
events for a device in a computer network. The device can be
the entire network, a portion of the network, or a single node
in the network. A normal profile for the device can be
retrieved from a database. The normal profile typically
includes normal event counts in each category for the device.
The difference between the current event count and the nor-
mal event count can be calculated for each category. If the
current event count is greater than the normal event count, a
percentage increase can be calculated by dividing the differ-
ence between the current event count and the normal event
count by the normal event count. An alert percentage can be
obtained from a table stored in a database. The alert percent-
age is typically determined based on the current event count
for the category. Each alert percentage can be associated with
arange of current event counts. The correct alert percentage is
determined by finding the range of count data that the current
event count data fits in and retrieving the associated alert
percentage. A comparison can then be made between the alert
percentage and the percentage increase of event counts. Per-
centage increase for event counts greater than or equal to the
alert percentage will result in an alert being triggered in the
analysis system.

For another aspect of the present invention, the analysis
system can receive a current event count for a category of
recordable events for a device in a computer network. A
previous profile count for the device can be retrieved from a
database. The previous profile count typically represents
event count data of the device for the most recently completed
event count analysis. The difference between the current
event count and the previous profile count can be calculated
for each category. If the current event count is greater than the
previous profile count, a percentage increase can be calcu-
lated. An alert percentage based on the current event count
can then be obtained from a table stored in a database. A
comparison can then be made between the alert percentage
and the percentage increase of event counts. Percentage
increase for event counts greater than or equal to the alert
percentage will result in an alert being triggered in the analy-
sis system.

For a further aspect of the present invention, the analysis
system can receive a current event count for a category of
recordable events for a device in a computer network. Two or
more previous profile counts for the device can be retrieved
from a database. An average profile count can be determined
for each category in the previous profile counts by summing
the previous profile counts for a category and dividing the

10

15

20

25

30

35

40

45

50

55

60

65

4

sum by the total number of profile counts retrieved. The
difference between the current event count and the average
profile count can be calculated for each category. If the cur-
rent event count is greater than the average profile count, a
percentage increase can be calculated. An alert percentage
based on the current event count can then be obtained from a
table stored in a database. A comparison can then be made
between the alert percentage and the percentage increase of
event counts. Percentage increase for event counts greater
than or equal to the alert percentage will result in an alert
being triggered in the analysis system.

For yet another aspect of the present invention, the analysis
system can receive event data for a device from sensors and
other devices in the computer network. The sensors typically
review data packets for intrusion events or recordable events
that may be an attack or a precursor to an attack on the device.
Device data can be obtained from a database. The device data
can include information related to the device’s state, includ-
ing the “normal” profiles of a given sensor at the device and
any information about open alert tickets associated with the
device. One or more rules can be retrieved from cache and
applied by a rules engine to the event data to determine if there
are any recordable events. Each recordable event can be
placed into one or more categories and the current total event
count for each category can be calculated by summing all of
the recordable events in a category. A normal profile for the
device can be retrieved from a database. The current total
event count can then be compared to the normal profile count
for the first category to determine if there is an increase in the
event count over the normal profile count which may repre-
sent an attack on the device.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the exemplary
embodiments of the present invention and advantages
thereof, reference is now made to the following description in
conjunction with the accompanying drawings in which:

FIG. 1 is a block diagram illustrating an exemplary oper-
ating environment for implementation of various embodi-
ments of the present invention;

FIG. 2 is a flowchart illustrating a process for receiving a
series of event data from multiple sensors in a network com-
puting system and processing information for the event data
in accordance with an exemplary embodiment of the present
invention;

FIG. 3 is a flowchart illustrating a process for conducting
the initial processing of event data in accordance with an
exemplary embodiment of the present invention;

FIG. 4 is a flowchart illustrating a process for converting
event data into discrete worker tasks in accordance with an
exemplary embodiment of the present invention;

FIG. 5 is a flowchart illustrating a process for transmitting
tasks to worker nodes in accordance with an exemplary
embodiment of the present invention;

FIG. 6 is a flowchart illustrating a process for associating a
worker with a particular network in accordance with an exem-
plary embodiment of the present invention;

FIGS. 7 and 7A are flowcharts illustrating task processing
on the event data in accordance with an exemplary embodi-
ment of the present invention;

FIGS. 8 and 8A are flowcharts illustrating a process for
evaluating the event data based on a set of rules in accordance
with an exemplary embodiment of the present invention;

FIG. 9 is a flowchart illustrating a process for comparing
data obtained in the task processing to previous data obtained

US 9,256,740 B2

5

in regards to the device of the computing system in accor-
dance with an exemplary embodiment of the present inven-
tion;

FIG. 10 is a flowchart illustrating a process for recalculat-
ing the “normal” profile for a device on the computing system
in accordance with an exemplary embodiment of the present
invention; and

FIG. 11 is block diagram of a matrix used in the compari-
son of data for a device in accordance with an exemplary
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

The present invention supports a computer-implemented
method and system for retrieval and analysis of event data in
a networked computing system. Exemplary embodiments of
the present invention can be more readily understood by
reference to the accompanying Figures. Although exemplary
embodiments of the present invention will be generally
described in the context of a software module and operating
system running on a network, those skilled in art will recog-
nize that the present invention can also be implemented in
conjunction with other program modules for other types of
computers. Furthermore, those skilled in the art will recog-
nize that the present invention may be implemented in a
stand-alone or in a distributed computing environment.

In a distributed computing environment, program modules
may be physically located in different local and remote
memory storage devices. Execution of the program modules
may occur locally in a stand-alone manner or remotely in a
client/server manner. Examples of such distributed comput-
ing environments include local area networks, enterprise
wide computer networks, and the global Internet.

The detailed description that follows is represented largely
in terms of processes and symbolic representations of opera-
tions by conventional computing components, including pro-
cessing units, memory storage devices, display devices, and
input devices. These processes and operations may utilize
conventional computer components in a distributed comput-
ing environment.

The processes and operations performed by the computer
include the manipulation of signals by a processing unit or
remote computer and the maintenance of these signals within
data structures resident in one or more of the local or remote
memory storage devices. Such data structures impose a
physical organization upon the collection of data stored
within a memory storage device and represent specific, elec-
trical or magnetic elements. The symbolic representations are
the means used by those skilled in the art of computer pro-
gramming and computer construction to most effectively
convey teachings and discoveries to others skilled in the art.

Exemplary embodiments of the present invention include a
computer program that embodies the functions described
herein and illustrated in the appended flowcharts. However, it
should be apparent that there could be many different ways of
implementing the invention in computer programming, and
the invention should not be construed as limited to any one set
of'the computer program instructions. Furthermore, a skilled
programmer would be able to write such a computer program
to implement a disclosed embodiment of the present inven-
tion without difficulty based, for example, on the flowcharts
and associated description in the application text. Therefore,
disclosure or a particular set of program code instructions is
not considered necessary for an adequate understanding of
how to make and use the present invention. The inventive
functionality of the computer program will be explained in

10

15

20

25

30

35

40

45

50

55

60

6

more detail in the following description and is disclosed in
conjunction with the remaining Figures illustrated in the pro-
gram below.

Referring now to the drawings, in which like numerals
represent like elements throughout the several Figures,
aspects of the present invention and an exemplary operating
environment for the implementation of the present invention
will be described. FIG. 1 is a block diagram illustrating an
event retrieval and analysis system 100 constructed in accor-
dance with an exemplary embodiment of the present inven-
tion. The exemplary event analysis system 100 includes mul-
tiple sensors 105, an aggregator 110, a scheduler 115,
multiple scheduler wrappers 120, an MSS database 135, an
information database 137, an XPS database 140, a scheduler
database 145, an information database 137 a rules engine 150,
and a trouble ticketing system 160.

The sensors 105 are communicably attached via a distrib-
uted computer network to the aggregator 110. In one exem-
plary embodiment, the sensors 105 receive event data from
one or more devices in a networked computing system. The
aggregator 110 is communicable attached via a distributed
computer network to the scheduler 115. The aggregator
receives all the incoming event data from the various com-
puter sensors 105. The aggregator 110 typically arranges this
data and forwards it to the scheduler 115 for processing.

The scheduler 115 is communicably attached via a distrib-
uted computer network to the aggregator 110 and to several
schedule wrappers 120. The scheduler 115 handles manage-
ment of the event data being received from the sensors 105
through the aggregator 110. In one exemplary embodiment,
upon startup of this system 100, the scheduler 115 registers as
a client to the aggregator 110 to receive the event data from
the aggregator 110. The scheduler 115 then converts the event
data stream into discrete work tasks, which can then be sent
out to the scheduler wrappers 120 for processing. In one
exemplary embodiment, the scheduler 115 communicates
with the scheduler wrappers 120 via Java RMI.

The scheduler wrappers 120 are communicably attached
via a distributed computer network to the scheduler 115, the
MSS database 135, the information database 137, the XPS
database 140, the scheduler database 145, and the rules
engine 150. The scheduler wrapper 120 conducts the process-
ing of the event data received from the scheduler 115. When
a scheduler wrapper 120 is initiated, it registers with the
scheduler 115, indicating that the scheduler wrapper 120 is
ready to accept tasks or event data for processing. At that
point, the scheduler 115 can begin dispatching tasks to the
scheduler wrapper 120 for it to then dispatch to workers 125
and worker threads 130.

Each scheduler wrapper 120 represents a distinct process
running on the scheduler 115. The scheduler wrapper 120 is
responsible for starting up or initiating individual worker
threads 130 and managing the worker thread’s 130 life cycle.
The scheduler wrapper 120 receives Java RMI calls from the
scheduler 115 and communicates to the scheduler 115 on
behalf of its workers 125. In one exemplary embodiment, the
scheduler wrapper 120 is a very light wrapper around a set of
distinct worker threads 130 running within a single Java VM
process.

A scheduler 115 may run any number of scheduler wrapper
120 processes, each in a distinct java VM instance. A given
scheduler wrapper 120 may run any arbitrary number of
worker threads 130, although, in one exemplary embodiment,
the processing degradation often occurs with approximately
thirty distinct worker threads 130 in a single scheduler wrap-

US 9,256,740 B2

7

per 120. In one exemplary embodiment, each worker 125
within a scheduler wrapper 120 operates twenty worker
threads 130.

The worker 125 is a node in the scheduler wrapper 120 that
processes analysis tasks on the event data. Each worker 125
operates as a thread within the scheduler wrapper 120, essen-
tially looping forever in a processing loop of receiving analy-
sis tasks passed on from the scheduler wrapper 120. The
worker 125 will typically receive an analysis task containing
new event data to process from the scheduler 115. The worker
125 retrieves the last known device state for the device in
question and runs the analysis task using the data received.
The worker 125 then triggers any alerts to the trouble ticket-
ing system 160.

The MSS database 135 is communicably attached via a
distributed computer network to the scheduler wrapper 120.
The MSS database 135 typically contains general research
information relating to attack data and specific customer net-
work data to give a richer set of data for the rules engine 150
to use in making decisions it interprets in the event data. The
MSS database may further include firewall logs, the custom-
er’s security information, information about the customer’s
network topology, scanning information, and indications of
which IP is on the customer’s network protocol. The worker
thread 130 can obtain the data in the MSS database 135 and
use it to assist the worker thread in its decisional processes
with regards to what particular event data may mean.

The information database 137 is communicably attached
via a distributed computer network to the scheduler wrapper
120 and the scheduler 115. The information database 137
typically contains device data not contained in the other data-
bases of the event analysis system 100. In addition, the infor-
mation database 137 can contain information from the trouble
ticketing system 160, information related to the network
topology and platform of customers, operating system infor-
mation, known critical servers, customer specific informa-
tion, and DMS lookup information. The worker thread 130
can obtain the data in the information database 137 and use it
to assist the worker thread in its decisional processes with
regards to what particular event data may mean.

The XPS database 140 is communicably attached via a
distributed computer network to the scheduler wrapper 120.
The XPS database 140 typically contains historical event data
and summarized information generated by the event analysis
system 100. The worker thread 130 can obtain the data in the
XPS database 140 and use it to assist the worker thread in its
decisional processes with regards to what particular event
data may mean.

The scheduler database 145 is communicably attached via
a distributed computer network to the scheduler wrapper 120.
The scheduler database 145 includes the data processed by
the worker threads 130, a copy of the decisions made by the
worker threads 130, the “normal” profiles for the devices on
each network being analyzed by the worker threads 130, the
device states for the devices on each network being analyzed,
the state of the networks being analyzed, stored event data
counts for each category of data for each of the devices on
each network being analyzed, and a listing of rules to be
applied to each device by the worker threads 130. Those of
ordinary skill in the art will recognize that the information
described in the MSS database 135, the information database
137, the XPS database 140, and the scheduler database 145
can be stored in one or several storage devices and that the
particular storage device the data is stored and the specific
number of storage devices used to store the data can be easily
modified and adjusted based on the users specific needs.

15

20

40

45

8

The rules engine 150 is communicably attached via a dis-
tributed computer network to the scheduler wrapper 120 and
the trouble ticketing system 160. The rules engine 150
receives event data and processes one or more rules against
that data. The rules analyzed against the event data can be the
same for every network or every device on a particular net-
work. On the other hand, the rules can be different for every
device on the network. The rules engine 150 can generate
alerts based on event data that triggers a rule. The alerts can be
transmitted by the rules engine 150 to the trouble ticketing
system 160 through the use of an incident report 155. On the
other hand, the rules engine 150 can generate and alert and
transmit that alert to a notifier (not shown). The alert from the
rules engine 150 can include instructions on the method of
alert produced by the notifier. In one exemplary embodiment,
alerts can include email notifications, text messages, pages to
a cell phone or pager, audible messages delivered to a work-
station, phone, or cell phone, an incident report 155, textual
messages sent to a workstation, visual or audible alarms sent
to a workstation or other methods of alerting known to those
of ordinary skill in the art.

The incident report 155 is typically generated by the rules
engine 150 by a worker thread 130. The incident report 155
can include information related to the fact that an alert has
occurred, basic information about the customer associated
with the device from which the event data was received, the
device from which the event data was received, the type of
alert, why the alert was triggered, and the percentage increase
in current event counts for the category that triggered the
alert. In one exemplary embodiment, the incident report 155
is a detailed breakdown of events leading up to the generation
of'an alert by the rules engine 150. The data in the exemplary
incident report 155 is sorted by each signature name, then by
source IP, then by destination IP. In addition each IP address
is examined based on the customer information to determine
if the IP address is external to the customer, internal, or a
critical system for the customer. The trouble ticketing system
160 is communicably attached via a distributed computer
network to the scheduler wrapper 120 and the rules engine
150. The trouble ticketing system 160 generates trouble tick-
ets based on alerts received from the rules engine 150.

FIGS. 2 through 10 are logical flowchart diagrams illus-
trating the computer-implemented processes completed by
exemplary methods for receiving and analyzing event data by
the event analysis system 100. FIG. 2 is a logical flowchart
diagram presented to illustrate the general steps of an exem-
plary process 200 for receiving and analyzing event data from
adevice in a computer network within the operating environ-
ment of the exemplary event analysis system 100 of FIG. 1.

Now referring to FIGS. 1 and 2, the exemplary method 200
begins at the START step and proceeds to step 205, where
event data for a device on a network is received at a sensor
105. In step 210, the sensor 105 transmits the event data to the
aggregator 110. In step 215, the aggregator 110 conducts
initial processing of the event data received from the sensors
105. In one exemplary embodiment, the initial processing of
the event data includes determining the device the event data
is associated with and the customer for whom the device is
being monitored. The scheduler 115 registers itselfas a client
to the aggregator 110 in step 220.

In step 225, the aggregator 110 transmits the event data to
the scheduler 115. The scheduler 115 converts the event data
into discrete work tasks in step 230. In step 235, the scheduler
wrapper 120 registers itself with the scheduler 115. The
scheduler 115 transmits the discrete work tasks to the workers

US 9,256,740 B2

9

125 in the scheduler wrapper 120 in step 240. In step 245, the
rule engine 150 processes rules on the work tasks passed to it
by the worker thread 130.

In step 250, an inquiry is conducted by the scheduler 115 to
determine if a completion report was received from the
worker thread 130 through the scheduler wrapper 120. If a
completion report was not received from the scheduler wrap-
per 120, the “NO” branch is followed to step 255, where the
scheduler 115 retrieves the discrete work task from the
worker thread 130. The process then returns to step 240 for
retransmission of the discrete work task to another worker
thread 130 in the worker 125 for processing. Returning to step
250, if a completion report was received from the scheduler
wrapper 120 by the scheduler 115, then the “YES” branch is
followed to step 260. In step 260, the scheduler 115 removes
the task from its pending queue list. In step 265, the scheduler
wrapper 120 transmits updated device state data to the sched-
uler database 145 for the discrete work task completed. The
process then concludes at the END step.

FIG. 3 is a logical flowchart diagram illustrating an exem-
plary computer-implemented method for the aggregator 110
to conduct initial processing of the event data received from
the sensor 105, as completed by step 215 of FIG. 2. Refer-
encing FIGS. 1, 2, and 3, the exemplary method 215 begins by
receiving the event data from the individual sensor 105 in step
305. In step 310, the aggregator 110 determines which device
that the event data is associated with. In one exemplary
embodiment, event data is associated with the device if the
event data is based on data packets being sent to or from the
device.

In step 315, the aggregator 110 adds the received event data
to a data queue for that device. In an alternative embodiment,
the aggregator 110, bypasses the queuing step and passes the
event data directly to the scheduler 115. In step 320, an
inquiry is conducted by the aggregator 110 to determine if the
data queue for that device has reached its limit. In one exem-
plary embodiment, the data queue reaches its limit when it has
stored 1000 logs of data. In an alternative embodiment, the
data queue for a device reaches it limit when it can no longer
hold additional event data in the queue or does not have
sufficient room to receive and store an additional download of
event data from the sensor 105. In another alternative embodi-
ment, the data queue reaches its limit when it has stored a
certain amount of data, irrespective of whether there is addi-
tional room in the data queue for more event data. If the data
queue has not reached its limit, the “NO” branch is followed
to step 325.

If the data queue has reached its limit, the “YES” branch is
followed to step 330, where the aggregator 110 summarizes
the data by categories. Categories generally represent one or
more groupings of security events in the event data that rep-
resent a type or severity of a potential attack on the device or
network. In one exemplary embodiment, the categories being
summarized include low priority event count, medium prior-
ity event count, high priority event count, total event count,
unique signatures count, scanned event count, worm signa-
ture event count, sweeps signature event count, hot decodes
signature event count, and staging signature event count.

The scanned signature event count typically represents
known scanning attacks against the device or network. Worm
signature event count typically represents known worm
attacks against the device or network. Sweeps signature event
count typically represents known network sweep attacks
against the network. Hot decodes signature event count typi-
cally represents high priority signatures that are currently
being tracked by a technician at a workstation. In one exem-
plary embodiment, the hot decodes signature event count

20

30

40

45

10

category uses a very sensitive threshold for determining
alerts, such that almost any deviation from normal is consid-
ered significant and thus, worthy of sending out an alert by the
rules engine 150. The staging signature event count typically
represents signatures currently being tested for inclusion into
other categories. Those of ordinary skill in the art will recog-
nize that the categories that the security events in the event
data are organized into can be modified and amended based
on new attacks, changes to the devices being monitored,
changes to the network topology for the networks being
monitored, changes to existing attack methods, or other rea-
sons known to those of ordinary skill in the art.

In step 325, an inquiry is conducted to determine if a
predetermined amount of time has passed since the last data
dump from the data queue in the aggregator 110 to the sched-
uler 115. In one exemplary embodiment, the predetermined
amount of time has been set at ten minutes, such that, if the
data queue does not reach a full limit in step 320 prior to the
passing of ten minutes time since the last data dump from the
queue, the aggregator 110 will automatically dump the event
data from the queue to the scheduler 115. Those of ordinary
skill in the art will recognize that the predetermined amount
of'time is adjustable from instantaneous to an infinite amount
of time based on the technicians preferences and needs. In an
alternative embodiment, the data is passed directly from the
aggregator 110 to the scheduler 115 without queuing the
event data, such that the need to determine if a predetermined
amount of time has passed is eliminated. If the predetermined
amount of time has not passed, the “NO” branch is followed
to step 305 where additional event data can be received from
the sensor 105. On the other hand, if the predetermined
amount of time has passed since the last data dump from the
data queue, the “YES” branch is followed to step 330, where
the event data is summarized into categories by the aggregator
110. The process then continues to step 220 of FIG. 2.

FIG. 4 is a logical flowchart diagram illustrating an exem-
plary computer-implemented method for converting event
data into discrete work tasks at the scheduler 115 as complete
by step 230 of FIG. 2. Now referring to FIGS. 1, 2 and 4, the
exemplary method 230 begins at step 405, where scheduler
115 receives the queued event data from the aggregator 110.
In step 410, the scheduler 115 generates an event list com-
prised of the queued event data and a header. The scheduler
115 retrieves the name of the customer associated with the
event data from the scheduler database 145 in step 415. In step
420, the scheduler 115 retrieves the name of the device asso-
ciated with the event data from the scheduler database 145.
The scheduler 115 inserts the customer name and the device
name into the header of the event list in step 425. The process
continues to step 235 of FIG. 2.

FIG. 5 is a logical flowchart diagram illustrating an exem-
plary computer-implemented method for transmitting dis-
crete work tasks from the scheduler 115 to the workers 125, as
complete by step 240 of FIG. 2. Now referring to FIGS. 1, 2,
and 5, the exemplary method 240 begins with counter vari-
able X being set equal to one in step 505. Counter variable X
typically represents the discrete work task being handled by a
worker 125 and received from the scheduler 115. In step 510,
the scheduler 115 retrieves the first discrete work task from
the event list. In step 515, the scheduler 115 determines the
device associated with the first discrete work task. In one
exemplary embodiment, the device is associated with the first
discrete work task if the first discrete task includes event data
from data packets sent to or from the device and received,
copied, or intercepted by the sensor 105. In step 520, the

US 9,256,740 B2

11

scheduler 115 determines the computing network of the
device. The network information is typically retrieved from
the information database 137.

In step 525, an inquiry is conducted by the scheduler 115 to
determine if a worker 125 is associated with the network on
which the device is associated. In one exemplary embodi-
ment, scheduler 115 receives event data for a given device, it
will assign the work task to be processed on the worker 125
that is “bound” to the customer who own that device or asks
that the device be monitored. By binding a given device
and/or customer to a particular worker 125, the scheduler 115
assures that tasks for a device are processed sequentially. In
one exemplary embodiment, once the scheduler 115 trans-
mits the work task to the worker 125, the worker 125 has the
responsibility of ensuring a first-in-first-out processing of
tasks for a given device.

If a worker 125 has not been associated with this network,
device or customer, the “NO” branch is followed to step 530,
where the scheduler 115 associates a worker 125 with the
particular network, device, or customer. Otherwise, the
“YES” branch is followed to step 535, where the scheduler
115 transmits the discrete work task to the worker 125 asso-
ciated with the network, device, or customer. In step 540, an
inquiry is conducted by the scheduler 115 to determine if
another discrete work task needs to be transmitted to one of
the workers 125. In one exemplary embodiment, additional
discrete work tasks are transmitted to workers 125 if addi-
tional tasks remain in the scheduler 115. If another discrete
work task needs to be transmitted to a worker 125, the “YES”
branch is followed to step 545, where the counter variable X
is incremented by 1. The processing returns to step 510 for the
retrieval of the next discrete work task from the scheduler
115. On the other hand, if there are no additional work tasks
needed to be transmitted to the worker 125, then the “NO”
branch is followed to step 245 of FIG. 2.

FIG. 6 is a logical flowchart diagram illustrating an exem-
plary computer-implemented method for associating a
worker with a particular network as completed by step 530 of
FIG. 5. Now referring to FIGS. 1, 5, and 6, the exemplary
method 530 begins with the scheduler 115 retrieving a listing
of workers 125 in step 605. In one exemplary embodiment,
the listing of workers 125 is based on information provided by
the scheduler wrappers 120 when they register with the
scheduler 115. In step 610, the scheduler 115 determines
which worker 125 is processing tasks for the fewest devices or
networks. The scheduler 115 selects the worker 125 process-
ing tasks for the fewest devices in step 615. In one exemplary
embodiment, if one or more workers 125 are not currently
processing any tasks, the scheduler 115 will select the first
worker 125 that it determines in not processing any tasks. In
step 620, the scheduler 115 associates the worker 125 with the
current network, device, or customer from which discrete
event tasks are being processed. The process then continues to
step 535 of FIG. 5.

FIGS. 7 and 7A are logical flowchart diagrams illustrating
an exemplary computer-implemented method for processing
tasks based on a set of rules as completed by step 245 FIG. 2.
Referencing FIGS. 1, 2, 7, and 7A, the exemplary method 245
begins with a worker thread 130 receiving a discrete task from
the pending queue in step 702. In step 704, the worker thread
130 retrieves data for the device associated with the event data
being evaluated from the scheduler database 145.

In one exemplary embodiment, the information retrieved
by the worker thread 130 includes the last known device state
for the device associated with the event data. The device state
is a measure of the knowledge the system 100 has about a
given device. The device state incorporates the known “nor-

20

30

35

40

45

12

mal” profiles of a given sensor 105, the remedy 1D assigned to
the device, and any information about open alert tickets asso-
ciated with the device. In addition, the device state can
include “rule state” information, that captures the current
state of each persistent rule and any metadata associated with
that state. In one exemplary embodiment, this information is
maintained in a persistent data store in the scheduler database
145, which enables any worker 125 to access the data when it
gets the analysis task for a given device.

In step 706, the worker thread retrieves rules to be applied
to the event data associated with the device from the rules
engine 150. Counter variable X is set equal to one in step 708.
Counter variable X represents each discrete rule retrieved
from the rules engine 150. In step 710, counter variable Y is
set equal to one. Counter variable Y represents a log of dis-
crete task data for a device. In step 712, the worker thread 130
transmits log Y to be analyzed against rule X in the rules
engine 150. LogY is evaluated based on rule X from the rules
engine in step 714.

In step 716, an inquiry is conducted by the rules engine 150
to determine if log Y data triggers rule X. If log Y data does
trigger rule X, the “YES” branch is followed to step 718
where the rules engine 150 transmits the trigger state of the
rule to a notifier in trouble ticketing system 160. Iflog Y data
does not trigger rule X, then the “NO” branch is followed to
720. In step 720, an inquiry is conducted by the worker thread
130 to determine if there is another rule X to apply to logY
data. If there is another rule to apply to the log Y data, the
“YES” branch is followed to step 722, where the counter
variable X is incremented by one. The process then returns to
step 712 for the transmission of the log Y data to the next rule
in the rules engine 150. On the other hand, if there are no
additional rules to apply the log'Y data to, the “NO” branch is
followed to step 724.

In step 724, an inquiry is conducted by the worker thread
130 to determine if there is another log Y of data in the
discrete task data. If there is another log Y of data in the task
data, the “YES” branch is followed step 726, where the
counter variable Y is incremented by one. The process then
returns to step 712 for the transmission of the next log Y of
data to rule X in the rules engine 150. On the other hand, if
there is not another log Y of data, then no branch is followed
to step 728, where the worker thread 130 transmits a notifi-
cation to the scheduler 115 and the rules engine 150 that
processing task is complete.

In step 730, an inquiry is conducted to determine if any
rules need to perform final processing steps. In one exemplary
embodiment, some rules include multiple steps that cannot be
completed in a single analysis. For example, a rule may state
that once a detection event is determined, the rule should wait
for a predetermined amount of time to see if there is a corre-
sponding state change. Ifthe state change does not occur, then
the rule can ignore the initial detection event. These rules are
given the opportunity to conduct their final processing steps
before the rules engine 150 completes the task processing
step. If some rules need to perform final processing steps, the
“YES” branch is followed to step 732, where each rule con-
ducts its final processing steps. On the other hand, if there are
not any rules that need to perform final processing steps, then
the “NO” branch is followed step 734, where counter variable
X is set equal to one.

In step 736, the worker threads 130 transmit request noti-
fications, or alerts, for the first rule to the notifier class. The
trouble ticketing system 160 takes actions based on the noti-
fications in steps 738. In one exemplary embodiment, the
actions taken by the trouble ticketing system 160 may include
generating an incident report 155, setting off an audible or

US 9,256,740 B2

13

visual alarm, sending textual, audio, or video messages to
electronic devices including, but not limited to telephones,
pagers, cell phones, email systems, voice mail systems, and
PDA’s that describe the alert, the device or customer associ-
ated with the event data that triggered the alert, a summary of
the reason for the alert and a description of the device.

In step 740, an inquiry is conducted by the worker thread
130 to determine if there is another rule for which request
must be transmitted. If so, the “YES” branch is followed to
step 742, where the counter variable X is incremented by one.
The process returns to step 736 to transmit a request for the
next rule to the notifier class. On the other hand, if there is not
another rule, then the “NO” branch is followed to step 744,
where clean-up task are conducted on the rules processed. In
one exemplary embodiment, clean-up tasks include request-
ing that the rule release any state that is not significant, if the
rule is holding open connections to data sources, such as the
MSS database 135 or the XPS database 140, it will close
them, and conduct any other action necessary to bring each
rule back to a zero state.

In step 746, the rules are transformed in to a serialized
form. Serializing the rules typically includes taking the state
of the rule in memory and reducing it to a form that can be
inserted into the scheduler database 145, so that the rule can
be recreated exactly in the same form as it was previously. In
one exemplary embodiment, serialization includes convert-
ing the rule into a byte stream that can be reloaded into
memory. In step 748, the worker thread 130 through the
schedule wrapper 120 transmits the serial rules and other data
related to the analysis to the scheduler database 145. The
worker thread 130 transmits notification to the worker 125
that the task processing is complete in step 750. In step 752,
the worker 125 through the scheduler wrapper 120 transmits
notification to the scheduler 115 that the task processing is
complete. The process then returns to step 250 of FIG. 2.

FIGS. 8 and 8A are logical flowchart diagrams illustrating
an exemplary computer-implemented method for evaluating
log data based on rule X as completed by step 714 of FIG. 7.
Now referring to FIGS. 1,7, 8, and 8 A, the exemplary method
714 begins with the scheduler 115 summarizing the log data
into categories in step 802. In step 804, the total event counts
for each category are calculated. In one exemplary embodi-
ment, the calculation of total event counts is achieved by
summing the total number of events placed sorted into the
category. The overall event count data is calculated in 806.
The overall event count represents the sum of the total event
counts for all of the categories for a device or network.

In step 808, metadata for the device being analyzed is
retrieved from the information database 137. In step 810,
information regarding the state of the device is retrieved. As
discussed in greater detail above, the device state is a measure
of the knowledge the system 100 has about a given device.
The worker thread 130 retrieves the “normal” profile for the
device being analyzed from the scheduler database 145 in
step 812. In one exemplary embodiment, each device has
multiple “normal” profiles, each profile calculated for a spe-
cific hour of the day and a specific day of the week. For
example, a device may have a “normal” profile designated
“Tuesday—11 a.m.” and another designated “Thursday—4
p-m.” When event data is retrieved from the sensor 105 for the
device during the 11 a.m. hour on a Tuesday, the worker
thread 130 will retrieve the “Tuesday—11 a.m. normal pro-
file” from the scheduler database 145 for comparison analy-
sis.

In step 814, the worker thread 130 compares the current
event count data to the “normal” profile using the threshold
matrix. The threshold matrix will be described in more detail

5

10

15

20

25

30

35

40

45

50

55

60

65

14

in FIGS. 9 and 11. In step 816, an inquiry is conducted by the
worker thread 130 to determine if any alerts have been trig-
gered based on the comparison of the current event count data
and the “normal” profile for the device. If alerts are triggered,
the “YES” branch is followed to step 818, where the triggered
alerts are saved for later processing. On the other hand, if no
alerts are triggered, then the “NO” branch is followed to step
820. In step 820, the worker thread 130 retrieves the previous
hour profile from the scheduler database 145.

In one exemplary embodiment, the previous hour profile is
the event count data for each category and the overall event
count for all categories for the device that was analyzed by the
system during the hour prior to the time the current event data
was obtained. One reason the event count data for the prior
hour is analyzed, is to determine if there has been a sudden
spike in event counts for one or more categories. Those of
ordinary skill in the art will recognize that the prior event
count retrieve could be composed of the prior hour’s data, a
single data count taken over multiple hours or a portion of a
single hour, any other temporal division, or the most recently
completed analysis of event counts for the device, irrespective
of time.

In step 822, the worker thread 130 compares the current
event count data to the “previous hour” profile using the
threshold matrix. In step 824, an inquiry is conducted to
determine if there are any alerts triggered based on the com-
parison of the “previous hour” profile in the current event
count data. If alerts are triggered, the “YES” branch is fol-
lowed to step 826, where the triggered alerts are saved for
processing at a later time. On the other hand, if no alerts are
triggered, then the “NO” branch is followed to step 828.

In step 828, the worker thread 130 retrieves the event count
data for the device for the previous four hours from the sched-
uler database 145. While the exemplary embodiment
describes the selection of the previous four hours of event
count data, those of ordinary skill in the art will recognize that
greater or fewer than the prior four hours of event count data
may be retrieved. Retrieval may also be made irrespective of
a particular amount of time, such that, for example, the prior
four completed analyses of the event count data for the device
may be retrieved irrespective of the time that each analysis
was conducted. The worker thread 130 calculates the average
counts for each category and the overall event count during
the previous four hours data in step 830. In step 832, the
worker thread 130 compares the current event count data to
the average counts for the previous four hours using the
threshold matrix.

In step 834, an inquiry is conducted by the worker thread
130 to determine if any alerts are triggered based on the
comparison of the current event count data and the average of
the previous four hours event counts for each category and the
overall event counts. If alerts are triggered, the “YES” branch
is followed to step 842. Otherwise, if there were not any alerts
triggered, the “NO” branch is followed to step 836. In step
836, an inquiry is conducted by the worker thread 130 to
determine if a trouble ticket was previously opened for this
alert in this category of the device. If a trouble ticket was
previously opened, the “YES” branch is followed to step 840,
where the trouble ticket is closed. On the other hand, if a
trouble ticket was not previously opened, the “NO” branch is
followed to step 844. In step 842, the triggered alerts are saved
in the scheduler database 145.

In step 846, the worker thread 130 generates a trouble ticket
at the trouble ticketing system 160 in one exemplary embodi-
ment the trouble ticket may include information such as an
incident report 155 transmitted to the trouble ticketing system
160. In step 848, an incident report in generated by the trouble

US 9,256,740 B2

15

ticketing system 160. In step 850, the worker thread 130 saves
the trouble ticket and incident report in the scheduler database
145. In step 852, the worker thread 130 transmits the trouble
ticket and incident report to the worker 125. The worker 125
transmits the trouble ticket an incident report 155 to the
scheduler 115 in step 854. In step 856, the scheduler 115
transmit the trouble ticket an incident report 155 to an evalu-
ator for evaluation.

In step 858, in an inquiry is conducted by the worker
threads 130 to determine if any alerts were saved for later
processing. If there were no alerts were saved for processing,
then the “NO” branch is followed to step 860. Otherwise the
“YES” branch is followed to step 864. In step 860, the worker
thread 130 conducts an inquiry to determine if any alerts have
been saved for a significant amount of time. In one exemplary
embodiment, the worker thread 130 conducts this inquiry in
an effort to determine if a sensor 105 for a device is inoperable
or not working properly. In one exemplary embodiment, if
alerts have not been saved for two consecutive hours, that
would be considered a significant amount of time. If no alerts
have been saved for a significant amount of time, the “YES”
branch is followed to step 862 where the worker thread 130
transmits an alert to the trouble ticketing system 160 that the
sensor 105 associated with the device or network may have a
problem. On the other hand, if alerts have been saved or a
significant time has not been reached, then the “NO” branch
is followed to step 864. In step 864, the worker thread 130
through the schedule wrapper 120 saves the event count data
for the current hour for that device or network in the scheduler
database 145. In step 866, the worker thread 130 recalculates
the “normal” profile for the device or network for which the
event data was received. The process then continues to step
716 of FIG. 7.

FIG. 9 is a logical flowchart diagram illustrating an exem-
plary computer-implemented method for comparing current
event count data to other data using the threshold matrix as
completed by steps 814, 822 and 832 of FIG. 8. Referencing
FIGS. 1, 8, and 9, the exemplary method 814, 832, and 832
begins with counter variable X being set equal to one in step
905. Counter variable X represents a category of data as
previously described above. In step 910, the worker thread
130 retrieves the event count for the first category of data from
the current event data.

In step 915, the worker thread 130 calculates the difference
between the current data count for the first category of data
and the retrieved profile of count data for the first category of
data. As discussed in FIG. 8, the retrieved profile may include
the “normal” profile, the “previous hour” profile, and/or the
“previous four hour average” profile. In step 920, an inquiry
is conducted to determine if the current event data count for
the first category of data is greater than the count for that
category of data in the retrieved profile. If the current event
data count is greater, the “YES” branch is followed to step
925, where the worker thread 130 calculates the percentage
increase in the data count for the first category.

The worker thread 130 retrieves the threshold matrix asso-
ciated with the first category in step 930. In one exemplary
embodiment, the system 100 may retrieve a single threshold
matrix for every device of every customer, a different thresh-
old matrix for each customer, a different threshold matrix for
each device of each customer, a particular threshold matrix
for a particular type of device, or any other combination
known to those of ordinary skill in the art. In step 935, the
worker thread 130 determines that the percentage increase
triggers an alert based on the current event data count for the
first category of data.

25

35

40

45

16

FIG. 11 provides and exemplary block diagram of a thresh-
old matrix. As shown in FIG. 11, the exemplary threshold
matrix 1100 includes a table 1102. The threshold matrix table
1102 includes rows for “minimum count” 1105, “maximum
count” 1110, and “percentage change to trigger an alert”
1115. The threshold matrix table 1102 also includes one or
more columns of count rages 1115 that provide the range of
event count and the percentage change needed at that event
count level to trigger an alert.

An example of incorporating the exemplary threshold
matrix 1100 may be helpful. Using the example of a first
category and a comparison of the current event count data for
the first category having a count of 508 and the “normal”
profile for the first category having an event count of 250.
Because the current event count for the first category is 508
the percentage change needed to trigger an alert is selected
from column 2 of the matrix 1100, based on the fact that 508
lies in between 501 and 1500. Thus, only if the percentage
increase in the current event count over the “normal” profile
for the first category is greater than 100% will the alert be
triggered. In this example, the current event count is greater
than the “normal” profile count and the difference is calcu-
lated as 258. When 258 is divided by 250, the “normal” profile
count, the percentage increase is determined to be 103.2%
and the alert is triggered.

Returning to FIG. 9, in step 940, an inquiry is conducted to
determine if there is another category of event count data that
exists in the current event data. Returning to step 920, if the
current event data count for the first category of data is not
higher than the count for the retrieved profile, then the “NO”
branch is followed to step 940. In step 940, if another category
of event count data exists, the “YES” branch is followed to
step 945. In step 945, the counter variable X is incremented by
one. The process then returns to step 910 for the retrieval of
the next event count for the particular category of data. On the
other hand, if there are no additional categories of event count
data, then the “NO” branch is followed to step 816, 824, or
834 of FIG. 8.

FIG.101s alogical flowchart diagram illustrating an exem-
plary computer-implemented method for recalculating the
normal profile for a device associated with the event data
retrieved by the sensor 105 and analyzed by the worker thread
130 as completed by step 866 of FIG. 8. Now referring to
FIGS. 1, 8A, and 10, the exemplary method 866 begins with
the worker thread 130 determining the hour of the day of the
current log data that was retrieved by the sensor 105 in step
1005. In step 1010, the worker thread 130 determines the day
of the week the current log data was retrieved by the sensor
105. The worker thread 130 retrieves data points for the same
hour of the day and the same day of the week as the retrieved
log data in step 1015.

In step 1020, the worker thread calculates the trimmed
mean of the current logged data and the retrieved data points.
In one exemplary embodiment, the trimmed mean is calcu-
lated by evaluating all of the data points, event counts, includ-
ing the current event count for the first each category, remov-
ing the minimum and maximum event count and calculating
the average as the “normal” profile for that category. In an
alternative embodiment, the trimmed mean is calculated by
determining the standard deviation of all of the data points for
the category, removing the data points that are outside a
certain number of standard deviations, and calculating the
average count based on the remaining data points.

In another alternative embodiment, the trimmed mean is
calculated by generating a weighted average by giving greater
preference, and thus, greater weight, to data points obtained
more recently as compared to older data points. The worker

US 9,256,740 B2

17

thread 130 saves the trimmed mean as the “normal” profile in
the scheduler database 145 for the particular hour of the day
and day of the week that the event data was collected by the
sensors 105 in step 1025. The process then continues of 848
of FIG. 8A.

In conclusion, the present invention supports a computer-
implemented method for retrieving event data from a device
on a network, categorizing recordable events in the event
data, and comparing the categorized counts to stored profiles
of'data for that device against a threshold matrix to determine
if alerts should be triggered for the device. It will be appreci-
ated that the present invention fulfills the needs of the prior art
described herein and meets the above-stated objectives.
While there have been shown and described several exem-
plary embodiments of the present invention, it will be evident
to those skilled in the art that the various modifications and
changes may be made thereto without departing from the
spirit and the scope of the present invention as set forth in the
appended claims and equivalence thereof.

We claim:
1. A method for managing events, comprising:
receiving, by a computer, a multiplicity of event data that
represents a respective multiplicity of events corre-
sponding to the device;
adding, by the computer, the multiplicity of event data to a
queue for the device;
based on a characteristic of a potential attack associated
each of the multiplicity of events, categorizing, by the
computer, the multiplicity of event data into at least one
of a scanned event category that represents scanning
attacks against the device, a worm signature event cat-
egory that represents worm attacks against the device, a
sweeps signature event category that represents sweep
attacks against a network leading to the device, and a hot
decodes signature event category that represents high
priority signatures tracked by a user;
determining, by the computer, a total number of events in
each of the categories;
determining, for each category, a stored profile of the
events for each of the events corresponding to the
device;
calculating, by the computer, a percentage increase of the
total number of events for each of the categories based
on the total number of events of each of the categories
and the stored profile of events of the respective cat-
egory;
determining, by the computer, a range of number of events
within which the total number of events for each cat-
egory fits, the range of number of events of each of the
categories represented by a threshold matrix,
wherein the threshold matrix comprises one or more
ranges of number of events,
wherein each range of the number of events comprise a
maximum and minimum event count value, and
wherein each range of the number of events is associated
with an alert percentage value;
for each of the categories, determining, by the computer,
the alert percentage value associated with the range of
the number of events within which the total number of

15

20

25

40

45

50

18

events for the respective category fits, the alert percent-
age value comprising a value above-which alerts are
triggered; and

for each of the categories, determining, by the computer, if

the percentage increase of the number of events is
greater than the alert percentage value of the respective
category to generate an alert.

2. The method of claim 1, further comprising:

receiving, by the computer, another event data for another

event corresponding to the device;

adding, by the computer, the other event data to the queue

for the device; and

categorizing, by the computer, the other event as a staging

signature event if the other event data comprises a sig-
nature that is tested for inclusion into other categories.

3. The method of claim 1, further comprising categorizing
the multiplicity of event data in the queue for the device
responsive to determining that the queue associated with the
device is full.

4. The method of claim 1, further comprising categorizing
the events in the event data responsive to determining that the
queue is not full and a predetermined time passes a prior
categorization of events represented by respective event data
on the queue.

5. The method of claim 1, wherein the step of calculating a
percentage increase of the number of events for each category
further comprises:

determining, by the computer, that the total number of

events for each of the categories is greater than a count
associated with the stored profile of events for the
respective category;

for each of the categories, responsive to a positive deter-

mination that the total number of events is greater than

the count associated with the stored profile of events,

calculating, by the computer, the difference between the
total number of events and the count associated with
the stored profile of events; and

calculating, by the computer, a percentage increase of
the total number of events over the count associated
with the stored profile of events.

6. The method of claim 1, wherein the stored profile of
events associated with each of the categories is a normal
profile count for the respective category, the normal profile
count comprising an evaluation of a total number of events for
the respective category associated with the device when the
device is operating properly.

7. The method of claim 1, wherein the stored profile of
events associated with each of the categories is a previous
profile count for the respective category, the previous profile
count comprising a total number of events for the respective
category as determined in a most recent prior analysis of the
event data for the device.

8. The method of claim 1, wherein the stored profile of
events associated with each of the categories is an average
profile count for the respective category, the average profile
count calculated based on two or more previous profile counts
for the respective category of the device as determined in a
prior analysis of the event data for the device.

#* #* #* #* #*

